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Abstract—Measurements of basin-scale acoustic transmissions
made during the last four years by the Acoustic Thermometry
of Ocean Climate (ATOC) program have allowed for the study
of acoustic fluctuations of low-frequency pulse propagation at
ranges of 1000 to 5000 km. Analysis of data from the ATOC
Acoustic Engineering Test conducted in November 1994 has
revealed new and unexpected results for the physics of ocean
acoustic wave propagation in random media. In particular, use
of traditional �;� methods (using the Garrett–Munk (GM)
internal wave model) to identify the wave propagation regime
for early identifiable wavefronts predict the saturated regime,
whereas observations of intensity probability density functions,
intensity variance, and pulse time spread and wander suggest
that the propagation is more likely near the border between the
unsaturated and partially saturated regimes. Calculations of the
diffraction parameter � are very sensitive to the broad-band
nature of the transmitted pulse, with CW calculations differing
from a simplistic broad-band calculation by 103! A simple model
of pulse propagation using the Born approximation shows that
CW and broad-band cases are sensitive to a random medium
very differently and a theoretical description of broad-band
effects for pulse propagation through a random media remains a
fundamental unsolved problem in ocean acoustics.

The observations show that, at 75-Hz center frequency, acoustic
normal mode propagation is strongly nonadiabatic due to random
media effects caused by internal waves. Simulations at a lower
frequency of 28 Hz suggest that the first few modes might be
treated adiabatically even in a random ocean. This raises the
possibility of using modal techniques for ocean acoustic tomog-
raphy, thereby increasing the vertical resolution of thermometry.

Finally, the observation of unsaturated or partially saturated
propagation for 75-Hz broad-band transmissions, like those of
ATOC, suggests that ray-based tomography will be robust at
basin-scales. This opens up the possibility of ray-based internal
wave tomography using the observables of travel time variance,
and vertical and temporal coherence. Using geometrical optics
and the GM internal wave spectrum, internal wave tomography
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for an assortment of parameters of the GM model can be
formulated in terms of a mixed linear/nonlinear inverse. This is a
significant improvement upon a Monte Carlo approach presented
in this paper which is used to infer average internal wave energies
as a function of depth for the SLICE89 experiment. However,
this Monte Carlo approach demonstrated, for the SLICE89
experiment, that the GM model failed to render a consistent
inverse for acoustic energy which sampled the upper 100 m of the
ocean. Until a new theory for the forward problem is advanced,
internal wave tomography utilizing the signal from strong mode
coupling can only be carried out using time-consuming Monte
Carlo methods.

Index Terms—Acoustic propagation, internal waves, scattering,
tomography.

I. INTRODUCTION

T HE preponderance of effort to understand ocean acoustic
wave propagation in random media (WPRM) has been

focused on relatively high acoustic frequency and short-range
experiments [1]–[3]. In the 1990s, low-frequency basin-scale
experiments were motivated by the desire to measure ocean
climate change [4], and acoustical oceanographers undertook
the design of their experiments by extrapolating the estab-
lished WPRM ideas to low frequency and long range. At the
same time, the possibility of using acoustic fluctuations to
tomographically infer internal wave energies and spectra was
intriguing. It was far from obvious, however, that the signals
would not be seriously degraded after propagating across an
ocean basin. The 1000-km SLICE89 transmission experiment,
which revealed strong internal-wave-induced acoustic scatter-
ing in the pulse crescendo, generated the following questions
for basin-scale transmissions: would the acoustic scattering
from internal waves be too strong to identify stable arrivals?
Would the acoustic propagation be adequately described by
geometrical optics so that ocean acoustic tomography could be
effective? Could phase coherent processing be used on long-
range signals to detect the signals and achieve the necessary
signal-to-noise ratios? As it has turned out, much has been
learned from recent basin-scale experiments, and this is the
subject of this paper.

Instrumentation of the northeastern Pacific was carried out
by the Acoustic Thermometry of Ocean Climate (ATOC)
program. Since December of 1995, ATOC has been transmit-
ting pulses at a center frequency of 75 Hz from a bottom-
mounted source (depth m) on Pioneer Seamount
to several receivers throughout the north Pacific (Fig. 1).
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Fig. 1. ATOC transmission paths from the Pioneer Seamount and the Kauai
sources. Alphabetic symbols are for bottom-mounted horizontal arrays. VLA’s
are labeled VLA1 and VLA2.

Receivers include two moored 40–element vertical line arrays
(VLA’s) spanning 1400 m (VLA1 and VLA2) and several
bottom-mounted horizontal arrays (alphabetic labels; see [5]
for a discussion of data from these receivers). Signals are sent
every 4 h during transmission periods established by the ATOC
Marine Mammal Research Program.

An example of a wavefront measured at the Hawaii VLA
is shown in Fig. 2 together with two numerical simulations.
The single pulse shown in Fig. 2 consists of 40 repeated-
sequences, which are coherently averaged to increase signal-
to-noise levels [6]. The energy which arrives at the earlier
travel times shows fronts that form a double accordion pattern.
This is the ray-like region. The ray-like region contains
the data for a typical ocean acoustic tomography analysis
because every point along the front can be associated with a
geometrical optics ray that samples the ocean in a specific way.
The earliest arrivals are composed of rays that reflect from
the ocean surface and sample nearly the whole water column.
Later fronts are composed of rays that have upper turning
points in the upper 300 m of the ocean. The region at late
arrival times in which ray-like fronts are no longer apparent is
called the mode-like region. The mode-like region is composed
of acoustic energy that is trapped near the sound-channel axis
and can be described by low-order acoustic modes. Note that
the typical double accordion pattern of the arrival as seen
in the simulations is not evident in the ATOC data. This is
a result of bottom acoustic energy stripping near the source
which eliminates initially downward propagating energy.

The upper panel of Fig. 2 shows a time front from a numer-
ical simulation with internal wave sound-speed perturbations
obeying the Garrett–Munk (GM) internal wave spectrum [7],
[8]; the center panel is a measured pulse from the ATOC

Hawaii VLA, and the lower panel is a numerical simulation
without internal wave sound-speed perturbations. For the early
ray-like region, the three time fronts are qualitatively the same:
the data and the simulation with internal waves have small time
shifts due to internal waves and the intensity varies along the
fronts. In the mode-like region, however, the data and the
simulation with internal waves show significant broadening of
the energy in depth compared with the case of no internal
waves. It is in this region that the internal waves show their
largest effect; this can be understood in terms of mode coupling
[9] or ray refraction [10], [11]. The general arrival pattern as
just described is now known to be typical of low-frequency,
long-range, and broad-band acoustic transmissions in the ocean
[11], [6].

The primary focus of this paper will be on an experiment
conducted by the ATOC program in November of 1994 called
the Acoustic Engineering Test (AET) in which signals with
a 75-Hz center frequency and a bandwidth of 37.5 Hz (3-dB
point) were transmitted from a source suspended from R/P
FLIP, which was moored roughly 250 nm south–southwest
of San Diego near Jasper Seamount [6]. The signals were
received on two 20-element 700-m long VLA’s; one located
approximately 85 km from the source and one located 3250 km
away near the island of Hawaii. Signals were also observed on
several bottom-mounted horizontal arrays (see [5]). Transmis-
sions were carried out over a 6-day period with a 2-h minimum
time separation between transmissions. The AET showed
acoustic fluctuations consistent with unsaturated or nearly
partially saturated wave field statistics based on observations
of the intensity probability density function (PDF), intensity
variance, and the pulse time spread and wander [13]. Predic-
tions of the wave propagation regime based on traditional
and calculations [1], [2] indicate strong saturated behavior
in contradiction to the observations. In addition, predictions of
pulse time spread , using the theory of Dashen and Flatté
[12], are larger than the observations by nearly two orders of
magnitude [13]. In this paper, it is argued that the failure of
these theories to explain the AET is due to CW or narrow-band
assumptions in the theory.

This failure and the past successes of this body of theory,
even for pulse propagation exeriments, are associated with
a few facts. First, only recently has it been possible to ex-
actly calculate the acoustic weighting function for propagation
through internal waves along a geometrical optics ray path
[13]. Previous approximations have been shown to be in
significant error by placing too much weight at the ray upper
apex and not enough weight several hundreds of meters below
the apex [13]. This effect does not have a strong impact
on the calculation of but it has a strong influence on the
calculation of and . Also, comparisons have not been
made with observations for a very long propagation range;
previous theory/observation comparisons were for short range
and higher acoustic frequency and in general the acoustic
fluctuations were small. The very long range of the AET
and the strong range scaling of the theory have made the
differences apparent.

As support for this argument on broad-band effects, a
calculation of the ray-tube extent for a constant sound-speed



140 IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 24, NO. 2, APRIL 1999

Fig. 2. Time fronts from the ATOC VLA1 and numerical simulations. The upper panel is a simulation using the Levitus 1994 sound-speed database plus internal
wave sound-speed perturbations at the GM reference level. The middle panel is a measured time front, and the lower panel is a simulation without internal waves.

channel is presented. This approach is similar to that of
Bowlin who showed how to calculate ray tubes for arbitrary
sound-speed profiles [14]. For finite frequencies and broad-
band signals, it is shown that ray paths have finite spatial
extent and that this spatial extent is the characteristic scale
of the broad-band acoustic field. This is in contrast to CW
signals whose characteristic spatial extent is the first Fresnel
zone radius . For the practical cases presented in this
paper, the ray-tube extent is constant along a ray path
and is closely given by where is the signal
bandwidth. Replacing with in the definition of the
diffraction parameter gives broad-band values of for the
AET that are smaller than the CWby a factor of nearly 1000.
This approach is obviouslyad hocsince the original derivation
of for CW cases was based on the physics of the Rytov
theory [1]. The approach here is heuristic to underscore the
differences in the characteristic spatial scales of the acoustic
field, with the understanding that the characteristic scales
have important physical meaning. To examine the physics
more closely, a treatment of pulse propagation using the well-
known Born approximation is presented where the limiting
case of a CW signal can be seen. For a broad-band signal, the
important parameter is , the bandwidth divided by
the center frequency. It is shown that for broad-band signals,
like the ATOC signal , pulse scattering is indeed
very different than CW scattering. In particular, pulses are
insensitive to scales larger than the first Fresnel zone radius
at the center frequency where as CW signals have no such
cutoff. The broad-band effects shown here, however, are not a
factor of 100 or 1000 effect as would be required to describe
the AET results. This suggests that more work is needed to
understand the AET results, but this is a first step toward a
fully broad-band theory of ocean acoustic WPRM.

Observations are also presented which show strong internal-
wave-induced scattering in the final arrivals that reduces the
number of resolved wavefronts in basin-scale transmissions,
thereby reducing the vertical resolution possible for tomog-
raphy. Observed low-order acoustic mode arrivals from the
ATOC transmissions to Kiritimati and Hawaii (see Fig. 1)
are strongly nonadiabatic so that vertical resolution cannot
be improved by adding mode travel times to the tomography
inverse. Numerical simulations presented in this paper suggest
that lower frequencies, on the order of 30 Hz, may result in
sufficient adiabaticiy for the lowest order modes to be used
for tomography.

The observation of unsaturated or partially saturated prop-
agation suggests that ray-based tomographic techniques for
large scales (ocean acoustic tomography) and small scales
(internal wave tomography) are robust. A scheme is outlined
for performing ray-based inversions for internal wave model
spectral parameters based upon observations of travel time
variance, and time and depth coherence. Also presented are
inversions for average internal wave displacement variance
as a function of depth for the SLICE89 experiment [15], [9],
based on Monte Carlo forward modeling using the GM internal
wave spectrum, and observations of wavefront travel-time
fluctuations and vertical scattering of acoustic energy in the
wavefront finale. It is found for the SLICE89 experiment that
the GM model cannot yield a consistent inverse for internal
wave displacement variance for acoustic energy, which has
sampled the upper 100 m of the ocean. This result reveals the
well-known oceanographic fact that the GM model is not an
upper ocean model; in fact, it is surprising that the GM model
works to a depth of 100 m!

This paper is organized as follows. Section II discusses
the theory of WPRM regimes as described by unsaturated,
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partially saturated, and fully saturated wave fields and presents
observations and predictions for the AET. Section II also dis-
cusses broad-band effects for ocean acoustic WPRM. Random
media effects related to large-scale tomography and internal
wave tomography are examined in Section III. A summary
and discussion are given in Section IV.

II. BASIN-SCALE WPRM

The AET experiment conducted in the eastern North Pacific
by the ATOC program has revealed some unexpected results
relating to the nature of acoustic wave propagation regimes in
a fluctuating ocean in terms of unsaturated, partially saturated,
and saturated wave fields. The nature of wave propagation
in a random medium as a function of range, frequency, and
spectra of wave speed fluctuations has been expressed using
the parameters and , which will be discussed below [1],
[2]. The expressions which have been used in the past
to predict unsaturated to saturated wave propagation regimes
completely fail for the AET [13]. In addition, predictions of
pulse time spread , using the path integral theory of Dashen
and Flatt́e [12], overpredict the spread by nearly two orders of
magnitude [13]. Furthermore, it is asserted that the failure is
due to the CW and narrow-band assumptions inherent in the
treatment of and the pulse spread, and that a broad-band
theory is needed to describe pulse transmission experiments
like the AET.

A discussion of acoustic fluctuation quantities is given first
to provide some basic definitions and provide a framework for
the interpretation of the AET results.

A. Acoustic Fluctuation Quantities

The strength parameter represents, in the geometrical
optics limit, the rms phase fluctuation of a ray for a fixed
ray path . This quantity is given by

(1)

where is the fractional sound-speed variance,is the
acoustic frequency, and is the effective correlation length
of the internal waves along the ray path. is calculated
using the expression

(2)

where is the correlation func-
tion of internal wave displacements. Note that the Markov
approximation has not been made in our evaluation of,
which is extremely important to accurate predictions [13]. This
approach has also been taken by Henyey [3] in examining the
validity of the Markov approximation for steeply turning rays.

The diffraction parameter is the weighted average of
along a ray, where is the first Fresnel

zone radius and is the spectrum-weighted average value
of the square of the vertical wavenumber of internal waves.

Thus,

(3)

where , is the acoustic wavelength, and
the Green’s function [2] gives the vertical distance
from a ray to a nearby “broken” ray having unit slope
discontinuity at . is also closely linked to the variance
of log-intensity ( ). For , Flattéet al. [1] have shown
from Rytov theory and a GM-like fluctuation spectrum that

where the proportionality constant is very close to
one. For , Flatt́eet al. [1] have shown that .

The average pulse shape is an important measure of acoustic
fluctuations, since sound-speed variations can distort the pulse
in the saturated and partially saturated regimes. The Fourier
transform of the mutual coherence function of frequency com-
bined with the appropriate source transfer function, ,
gives the ensemble averaged pulse (EAP)

(4)

Following Dashen and Flatté [12], [16], in the case of full
saturation, the mutual coherence function for small frequency
separations can be written as

(5)
with

(6)

(7)

(8)

(9)

The parameters , and can be interpreted as follows.
The quantities and combine in quadrature to give the
width of the pulse while represents a shift of the mean
pulse arrival time (i.e., a travel-time bias). The quantity
represents the travel-time variance that one would measure in
the unsaturated region. The quantityrepresents the effect of
pulse spreading due to loss of coherence between frequencies.
Physically this coherence loss can be understood as a result
of the interference of many uncorrelated micro-rays. Also of
interest is that and both scale roughly like the square
of the range [16].

B. Wave Propagation Regimes

A qualitative understanding of the different wave propa-
gation regimes is needed to interpret the results presented
here. The approach has been to divide the space up
into regions describing saturated, unsaturated, and partially
saturated wave field statistics with the understanding that the
border regions between regimes are not absolutely defined [1].
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1) Unsaturated Region:For and , wave
propagation is adequately described by geometrical optics and
is called the unsaturated region. In the unsaturated region,
the acoustic field from an impulsive source as measured at a
receiver can be understood in terms of a single geometrical
optics ray path where the received pulse is just a replica
of the transmitted pulse. In the unsaturated region, travel
time and phase are precisely related; that is, the variance of
travel time . Intensity fluctuations result from
weak focusing and defocusing of the ray tube; the
boundary suggests that is less than one (i.e., rms 4.3-
dB fluctuations). However, the Rytov theory, from which this
result is derived, is known only to be accurate for
[17], [18]. Also, the log of intensity is normally distributed,
as can be seen from the weak fluctuation theory of Rytov [1],
[19].

2) Full Saturation: For and , wave propaga-
tion is called fully saturated. In the transition from geometrical
optics to full saturation, the single geometrical optics path
fractures into several uncorrelated micro-rays whose travel
times are very close to the travel time of the original ray.
Since the micro-rays have different travel times, the original
pulse shape is not observed at the receiver; the pulse is
spread in time. In the fully saturated regime, pulse time
spread is larger than the travel-time variance. Phase and
travel time are not simply related and, if the acoustic field is
considered to be a phasor, then this phasor executes a random
walk in the phase plane. Intensity fluctuations resulting from
the complex interference pattern of the micro-rays yield an
exponential intensity PDF, and approaches (rms
5.56 dB). However, the approach to the exponential PDF as

increases is known to be quite slow [20].
3) Partial Saturation: For and , wave

propagation is called partially saturated. In this case, micro-
rays are created by the small-scale fluctuations in the medium,
but they are correlated with one another by the large-scale
fluctuations. This region is difficult to analyze since one must
know the details of the micro-ray coherence to calculate quan-
tities such as travel-time variance, pulse spread, and intensity
distribution. In the partially saturated regime, the pulse time
spread and the travel-time variance may be comparable, and

can reach its maximum values. This latter fact is why the
partial saturation regime is often called the strong focusing
region [20].

C. AET Results

With the previous background material, a discussion of
the AET results can proceed. These results have been been
documented in detail by Colosiet al. [13] and Worcesteret
al. [6]. For the AET transmissions, the observed travel-time
variances are between (11 ms)and (19 ms), indicating
rms phase variations in excess of. The agreement between
the predictions using (1) and the GM internal wave model
at one-half the reference energy and the observations is very
good [13].

The observed pulse spreadsare much smaller thanwith
values between 0 and 5 ms rms. Predictions of pulse spread

using (7) and (9) are not in agreement with the observations
[13]. The predictions give spread estimates that are two orders
of magnitude too large. It should be noted also that the
predictions from (7) do not match the variablity of the spread
as a function of ray turning point depth. The narrow-band
calculation predicts that shallower-turning rays should have
more spread than deeper-turning rays [13].

In terms of intensity behavior for the AET, early arriving
wavefronts have intensity fluctuations which are clearly not
described by the exponential distribution of full saturation but
are closer to a log-normal distribution more typical of the
unsaturated regime [12]. Observed variances of log-intensity

are between 0.21 and 0.51, which are close to and in
excess of the weak fluctuation limit of 0.3.

Collectively, the AET observations show behavior typical
of unsaturated or barely partially saturated propagation. This
conclusion is supported by the facts that: 1) ; 2) the
PDF of intensity is close to a log-normal distribution; and 3)

is close to but slightly larger than weak fluctuation values.
On the other hand, predictions of the wave propagation

regime using and (see Fig. 4) predict that all of the
rays for the AET are well within the saturated region, where
the pulse is expected to be a complex interference pattern
of uncorrelated micro-rays. In full saturation , the
intensity PDF is expected to be close to exponential, and

should be close to (i.e., 1.64). Clearly, none of
these conditions are satisfied by the data. This is a completely
unexpected result.

D. Broad-Band versus Narrow-Band and CW Calculations

The unexpected AET results suggest a fundamental prob-
lem with the theory of acoustic fluctuations for basin-scale
transmissions like those of ATOC. Since it is certain that the
GM internal wave model is at least a zeroth-order description
of ocean internal waves, the wave propagation physics must
be scrutinized. In particular, the parametersand as
defined in (3) and (9) are for single-frequency and narrow-
band propagation, respectively. Because the AET experiment
transmitted pulses, the definitions of these parameters are not
precise. The parameter is ambiguous because the concept
of a Fresnel zone is inherently single-frequency, and the
expression for assumes small frequency separations. One
of the main issues here centers on the question of the spatial
scales of the sound field. For CW transmission, the logical
acoustic scale of a ray path is described by the Fresnel zone,
while for broad-band transmissions it is the ray-tube which is
significant [14].

1) A Simple Model of Ray-TubesThe subject of ray-tubes
has been rigorously treated by Bowlin [14] for an arbitrary
sound-speed profile, but a simple model of ray-tubes can be
constructed for a constant sound-speed channel . The
total acoustic field can be written

(10)
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Fig. 3. Upper panel: ray tube width for ray path (a) for a constant sound-speed channel (c0 = 1500 m/s). Gray scale is linear in amplitude and ray paths
(a and b, dashed) are shown for reference. The ray tube is calculated using a partial sum over acoustic normal modes which are within�7 m/s of the
group velocity of ray (a) (1474/s). Lower panel: time arrival pattern for two rays (a) and (b) for a receiver at 250-m depth and 4000-m range calculated by
summing over all of the acoustic normal modes (solid line) and the partial sum for ray (a) (dash–dot line).

where is the source spectrum, the vertical modes are
from the boundary condition,

and the dispersion relation is . The modal
group velocity is . The ray-tube
problem can be approached when it is realized that a ray is
a superposition of acoustic normal modes which have group
velocities very close to the group velocity of the ray [21],
[22]. Therefore, to form a ray from (10), the summation is
restricted to modes which are within some small neighborhood
of a chosen group velocity; call this velocity . To calculate
a ray path, (10) is modified as follows:

(11)

where time has been replaced in the equation with .
As an example, take: m/s, m,

m/s, a cosine window, m/s,
Hz, and Hz (50-Hz bandwidth). Fig. 3 shows the
ray tube for the eigenray which travels in a straight line and is
received at a range of 4000 m and a depth of 250 m. Fig. 3 also
shows the time arrival pattern at the receiver for the total field
and the restricted mode sum. The arrival (a) is well modeled
by the restricted mode sum. The ray-tube width is constant
along the ray, and its width at half maximum is closely given
by m. In contrast, the Fresnel radius for this

ray is given by

(12)

where is the acoustic wavelength, is the distance along
the ray, and is the total length of the ray. The Fresnel
radius is zero at the source and receiver and reaches a
maximum value midway along the ray of 140 m. Clearly, our
phenomenological description of the ray-tube widthdoes not
reduce to the Fresnel radius in the limit of CW transmission.
This model is presented here to demonstrate the significance
of broad-band effects.

The agreement between the simple expression and
this constant sound-speed model, and the rough agreement of
our model with the calculations of Bowlin [14], suggest that
the ray tube can be treated qualitatively and that a broad-band

parameter can be defined as follows.
The diffraction parameter is calculated in two ways. The

standard calculation is for the CW case, , and is defined
using the first Fresnel-zone radius at the center frequency

, as in (3)

(13)

where is the travel-time variance, is defined
as in (3), and is defined by

(14)
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Fig. 4. Lambda Phi (� versus�) diagram for the AET resolved wavefronts.

For a broad-band case, the Fresnel radiusis replaced with
a constant ray bundle width m ( Hz
is the bandwidth of the AET signals), yielding the estimate
for

(15)

Fig. 4 shows our CW and broad-band calculations forfor
the diagram for the AET experiment. The calculations
for this diagram are done as described by Colosiet
al. [13]. The values are about a factor of 1000 smaller
than the values of . The value can be understood
qualitatively in terms of the value of at the upper turning
points of the rays. Taking an average value ofto be about
130 m, then , which is a typical value
of in Fig. 4. For the CW case, the values are much
greater than 1. This can be understood qualitatively in terms
of the constant-sound-speed Fresnel zone [see (12)] where

km, and m gives m.
When there is a sound channel, the envelope ofis close
to the parabolic shape in (12), but oscillates between zero
at the ray turning points and its maximum value somewhere
in between [13]. These values of which are close to the
scale of the sound channel are clearly unreasonable, since they
predict that the sound field would be insensitive to even the
sound channel.

Again, it is reiterated that our broad-band calculation of
is not physics-based and is not related in any way to the

statistics of the acoustic field of pulses. Rather, it is a measure
of the average scales of the pulse wavefield to the vertical
scales of the internal wave field, with the understanding that
the physical effect of diffraction is determined by this ratio.

In considering the ray-tube calculation, it must be under-
stood that internal waves can dramatically modify the ray

tube, and therefore even Bowlin’s method has limitations.
Work by Simmenet al. [10] has shown that internal waves
can significantly expand the ray tube due to micromultipath
generation. A complete description of the ray tube as a function
of internal wave field parameters and the mean sound-speed
profile is a fundamental unsolved problem in ocean acoustic
WPRM.

2) Born Approximation for Pulses:The broad-band calcu-
lation of the diffraction parameter is compelling, but a more
physical understanding is sought to describe the effects of
pulse propagation through a random media. Another simple
model starts with the wave equation

(16)

for constant sound speed , fractional sound-speed pertur-
bation , and wavenumber where is
the wave frequency. The first Born approximation to (16) is
written as

(17)

where is the
spherical Greens function. For small angle scattering from a
point source and the observation position
at , the wavefunction becomes

(18)

Next, a pulse is formed using the Fourier transform so

(19)

where is a
Gaussian source transfer function. The frequency integral can
be done analytically, yielding

(20)

where

(21)

and

(22)

with

(23)
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Fig. 5. Geometry of the broad-band Born approximation problem.

Here , and
variables have been changed from to
and . Here is the first Fresnel-zone radius
given by , and is the wavelength at
the center frequency. Geometrically, is the center-frequency
phase difference between the straight-line path to the receiver
and the path scattered from point (see Fig. 5).
For , the standard single-wave Born approximation is
recovered [i.e., the second term in (18)].

From (20) and the condition that , it is seen that
. is, therefore, associated

with variations in the log-amplitude of the signal and
is associated with variations in the signal phase.

It is helpful to examine the spatial weighting properties for
and . Equation (22) can be rewritten as

(24)

where

(25)

(26)

and

(27)

Here the single-wave results (i.e., ) are

(28)

(29)

The variances of log-amplitude and phase can now be com-
pactly written as

(30)

and

(31)

where and . The weighting
functions and tell us the
spatial weighting on the correlation function of.

Here the effects of the signal bandwidth can be seen, and
the physically significant factor is, the bandwidth over the
center frequency. First, nonzerointroduces an exponential
modulation term depending on [see (27)], which confines
the influence of to a volume closer to the direct path of
the wavepacket (i.e., the axis). This modulation term also
depends on the phase delay. For , which corresponds
to early arriving energy on the rise of the pulse, there is strong
confinement along the axis. However, for , which
corresponds to late arriving energy on the fall of the pulse,
the modulation term becomes exponentially increasing until
some distance away from the axis that where
exponential decrease takes place. Physically, this effect for

is the influence of scattered energy away from the
axis but, because of the longer path length, takes longer to get
to the receiver (see Fig. 5).

Furthermore, the factor introduced a complex amplitude
term [square brackets in (22)] which mixes the single-wave
weighting functions and . The magnitude of the
mixing depends on . Also, it is seen from (22) that the
Fresnel radius at the center frequency plays a key role in the
spatial weighting of . In contrast to the ray-tube
picture which showed that the ray-tube extent was constant
along the ray, (22) shows that parts of the ray path are affected
differently.

As an example, a case relavant to the ATOC signal is
taken with Hz, Hz (3-dB point at 37.5
Hz; ) [6], and m/s. Figs. 6–8 show the
weighting functions for our test case and for

. The weighting functions are shown for
, therefore , and are plotted.
In Fig. 6, for , one can see the effect of the exponential

modulation term [see (27)], and the pulse weighting function
decays much more rapidly than the CW case. Here the effect
of the mixing of and is small for small values of

because .
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(a)

(b)

Fig. 6. Example weighting functions for (a)h�2i and (b) h�2i with � = 0 ms.

(a)

(b)

Fig. 7. Example weighting functions for (a)h�2i and (b) h�2i with � = ��=�0 = (2=�2)1=2 = 4:9818 ms.

In Fig. 7, for ms, which corresponds to the
rise of the unperturbed pulse, the mixing of the weighting
functions is clearly evident; does not start at zero. Also,

the exponential modulation term strongly affects the weighting
functions, and the weighting is closer to theaxis than in the

case.
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(a)

(b)

Fig. 8. Example weighting functions forh�2i and h�2i with � = �4:9818 ms.

Finally in Fig. 8, for ms, which corresponds to
the fall of the unperturbed pulse, the weighting functions are
further away from the axis. This effect occurs because this
late arriving energy must scatter from points further away from
the axis.

It is clear from Figs. 6–8 that pulse scattering is very
different from the CW case. The broad-band weighting func-
tions essentially place a cutoff on the sound-speed fluctuation
correlation function at the first Fresnel-zone radius whereas
the CW weighting functions impose no such cutoff; that is,
pulse propagation is insensitive to scales larger than. At
the same time, it is clear that the ray-tube ideas presented
in the previous section are a gross oversimplification because

and have different sensitivities to the random medium,
and different parts of the propagation path are all not equally
affected by the random medium; that is, there is some effective
broad-band Fresnel radius which clearly de-emphasizes the
end-points of the propagation path and emphasizes the middle,
as can be seen from (22). The broad-band effect shown here,
however, is not a factor of 100 or 1000 effect, as would be
required to describe the AET results. This suggests that more
work is needed to understand the AET results.

E. Discussion

It has been shown that the value ofis quite sensitive to
the treatment of the broad-band character of the pulse;
and differ by a factor of 1000! Therefore, the wave
propgation regime is discussed under the assumption that
the calculation that has been done is at least roughly
appropriate. Thus, the experiment is predicted to behave as

though it were near the boundary of the weak-fluctuation and
strong-fluctuation regimes.

The observations of in the AET experiment are be-
tween 0.21 and 0.51 [13]; these are at the limit of and in excess
of weak-fluctuation values. Since the PDF’s are close to log-
normal rather than exponential, the transmissions appear to be
not far from the weak-fluctuation regime, if analogies with
optical propagation through turbulence are any guide [23].

The observed pulse spreadis smaller than the rms travel-
time variance by a factor of 3. This is again consistent with
unsaturated or partially saturated behavior.

The small spread results from the AET have important
implications for large-scale tomography, since pulse spread
and internal wave bias are closely related [see (9)]. The small
observed spread of 1 to 5 ms implies an equally small internal
wave bias.

A theory of pulse propagation is needed to make accurate es-
timates of wave-propagation regime (through), pulse spread,
and PDF. The simple Born approximation results presented
here are a good starting place. For the future, it is desirable
to have simpler analytical expressions for and than
(30) and (31) give, and it is necessary to account for a general
waveguide. However, there are clear range limitations to the
applicability of the Born approximation which is a single
scatter theory, and therefore the arrival of a fully broad-band
theory for long-range basin-scale transmissions might be very
far away.

Thus, we have come full circle since the SLICE89 exper-
iment. After the SLICE89 analysis, it was discovered that
acoustic scattering in the pulse cresendo was much stronger
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(a)

(b)

Fig. 9. The arrival patterns of (a) mode 5 and (b) mode 1 from the Pioneer Seamount source as observed at the ATOC VLA2 at Kiritimati (light line).
Simulated mode arrivals with (dash–dot line) and without (dark line) GM internal waves.

than anticipated. Now, after analysis of the ATOC AET data,
it is seen that the early ray-like arrivals show much weaker
scattering than previously thought.

III. A COUSTICAL OCEANOGRAPHY

Acoustic transmission data can be used to interpret oceano-
graphic variability, and, therefore, random media effects are
important to understand. For monitoring of large-scale ocean
heat content or mesoscale eddies, internal waves impose the
ultimate resolution limits much as the resolution limits of
ground-based telescopes are imposed by atmospheric turbu-
lence. For monitoring of small-scale ocean processes like
internal waves, acoustic observables are sought which show
large effects because detectability is often an issue. Also, the
functional relationship between the parameters of an internal
wave model and a set of acoustic observables must be known.

A. Acoustic Thermometry

Basin-scale acoustic thermometry has been undertaken by
the ATOC program to test large-scale climate models. As
a measurement technique, it complements satellite remote
sensing of the ocean surface [24]. The promise of acoustic
thermometry is to provide vertical resolution of ocean climate
variability—resolution that a satellite cannot provide (hori-
zontal resolution for satellites is excellent while for acoustic
methods it is poor). It is clear that internal waves are limiting
the identification of the ray paths near the sound channel axis
and the idenfied rays for the AET are all closely clustered to
the ocean surface [6], [13]. This case is similar to SLICE89
[15] (see Fig. 15); the AET VLA is at a range 3.2 times
longer than for SLICE89, but the frequency is that of the
frequency in SLICE89. For acoustic tomography, resolving
a large number of wavefronts with different turning depths

is how vertical resolution achieved. If wavefronts could be
identified further into the highly scattered mode-like region
(as would be the case if the data looked like the lower panels
of Figs. 2 or 10), then greater vertical resolution could be
achieved; therefore, internal waves limit the resolution of ray-
based acoustic thermometry. To supplement the ray arrivals
and enhance vertical resolution, the final arrival of the AET
has been interpreted as a mode 1 arrival [6]. Colosi and Flatté
[25] showed that the gravest acoustical mode is the most
robust to internal wave sound-speed perturbations. However,
Fig. 9 shows that the observed mode 1 and mode 5 arrivals at
the Kiritimati VLA for the ATOC transmissions from Pioneer
Seamount are highly spread in time relative to the simulation
without internal waves. The simulation with internal waves
shows comparable time spreading to the observations, and
comparisons between simulations with and without internal
waves indicate a travel-time bias of the order of several
hundreds of milliseconds. These observations indicate large
mode coupling. Mode arrivals at the Hawaii VLA show
comparable but slightly smaller mode coupling effects.

To examine if tomographic vertical resolution can be in-
creased at lower frequencies (i.e., mode coupling significantly
reduced), in May of 1995 the ATOC program performed an
alternate source test (AST) in which simultaneous 28-Hz and
84-Hz signals were transmitted by a source suspended near
the sound channel axis from a ship located close to Pioneer
Seamount. Two simulated time fronts for the Hawaii VLA
are shown in Fig. 10. The simulations are calculated using
range-dependent sound-speed profiles derived from the annual
Levitus 1994 database. Internal wave sound-speed fluctuations
were calculated using the method of Colosi and Brown [26],
but variations in the internal wave field due to changes in the
buoyancy frequency profile and the local Coriolis parameter
were not taken into account. For the simulations in Fig. 10,
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(a)

(b)

Fig. 10. Time fronts from numerical simulations at a center frequency of 84 Hz for the ATOC VLA1. (a) Simulation using the Levitus 1994 sound-speed
database plus a random realization of internal wave sound-speed perturbations at the GM reference level. (b) Simulation without internal waves.

(a)

(b)

Fig. 11. A realization of the arrival patterns for (a) mode 5 and (b) mode 1 at VLA1 computed from the simulation data shown in Fig. 10. The dash–dot/solid
lines are simulated arrival patterns without/with internal wave sound-speed perturbations.

the center frequency is 84 Hz and the 3-dB bandwidth is
15 Hz (for the ATOC source the center frequency is 75 Hz
and the bandwidth is 37.5 Hz). The general character of the
arrival pattern has early arriving stable ray-like energy with
small travel-time fluctuations and late arriving highly scattered
mode-like energy.

Fig. 11 shows simulated mode 1 and mode 5 arrivals for
the Hawaii VLA. For mode 1, the simulation without internal
waves shows a sharp peak whereas the simulation with internal
waves shows some time spread (0.1 s). This time spreading
is the result of mode coupling caused by internal waves;
mode 1 does not propagate from the source to the receiver
in such a way as to maintain its identity. Mode 1 measured
at the receiver is a complex superposition of energy which
has propagated as other mode numbers having different group
velocities. But, for mode propagation in the deep ocean, mode

1 has the smallest group velocity, and, therefore, the last
arriving energy in the mode 1 arrival pattern must be energy
which has mostly traveled as mode 1 from source to receiver.
Following Headrick [27], this point can be called the pseudo-
adiabatic mode 1 (PAM1) arrival which can be used in an
adiabatic acoustic inverse [6]. This PAM1 arrival is not strictly
adiabatic, as there is a travel-time bias associated with it [25].
The bias is on the order of 0.1 s.

Use of higher order modes would also increase the vertical
resolution of acoustic thermometry. From Fig. 11, it is clear
that mode 5 shows dramatic time spreading (1.0 s). A method
for doing the acoustic inverse problem in situations of strong
random mode coupling or nonadiabaticity remains a difficult
research topic.

Simulations of the arrival pattern at the Hawaii VLA for
the 28-Hz signal are shown in Fig. 12, which can be directly
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(a)

(b)

Fig. 12. Time fronts from numerical simulations at a center frequency of 30 Hz for the ATOC VLA1. (a) A simulation using the Levitus 1994 sound-speed
database plus internal wave sound-speed perturbations at the GM reference level. (b) A simulation without internal waves.

(a)

(b)

Fig. 13. Arrival patterns for modes (a) 5 and (b) 1 at VLA1 computed from the simulation data shown in Fig. 12. The dash–dot line is a simulated arrival
pattern without internal waves and the solid line is a simulated arrival pattern with internal waves.

compared to Fig. 10. The ray arrivals for the low-frequency
case are about as clean as the higher frequency case, yielding
a similar identification of wavefronts. The biggest difference
between the two cases is for the acoustic normal modes.

Fig. 13 shows the arrival patters for modes 1 and 5 at the
Hawaii VLA for the 28-Hz signals. Comparing to Fig. 11, it
is clear that mode coupling effects are significantly reduced.

The mode 1 arrival is almost completely adiabatic, showing
very little time spread. The mode 5 arrival shows fluctuations
but the basic envelope of the calculation with internal waves
matches the pattern of the no internal wave calculation.
Therefore, there is evidence that low-mode arrivals at 28 Hz
are much more robust to internal waves than the 84-Hz case!
Whether the AST data shows this dramatic reduction in mode
coupling will be revealed in later work.

B. Internal Wave Tomography

Understanding internal wave generation and dissipation is
a first-order oceanographic problem because internal waves
serve as an important pathway for the passage of energy
from large-scale flows to turbulence and molecular dissipation
[28]. Several processes are candidates to supply internal wave
energy [29], including wind forcing, instability of mesoscale
eddies, and tidal energy conversion. In arguing for the tidal
origin of internal waves, Munk states that “the remarkable con-
sistency (within a factor of 2) over a wide range of conditions
of both: 1) the internal wave intensity and 2) the diapycnal
diffusivity, argues for a more reliable source than just wind
energy” [28]. Specific sources of internal waves might be
recognized acoustically by the timescale of variability. Tidal
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origin suggests a fortnightly period for acoustic fluctuations,
while wind generation suggests a seasonal period due to the
development of the winter storm track. Mesoscale sources
suggest a geographic variability of acoustic fluctuations, so
that acoustic transmission paths which intersect regions of high
mesoscale activity, such as the California current system, will
have large acoustic fluctuations.

Aspects of the problem of internal wave tomography have
been discussed by many researchers [30]–[35]. For short-range
transmissions, the Rytov method, which is based on weak
fluctuation theory, may prove useful [35], but for long-range
transmissions Monte Carlo numerical simulations have been
the method of choice. This approach is discussed first for
the SLICE89 experiment before continuing on with the issues
from the ATOC and AET experiments.

1) SLICE89: The SLICE89 experiment was conducted in
the eastern north Pacific over a 10-day period during which
narrow pulses were transmitted from a moored 250-Hz center
frequency source (source depth m) to a 3-km-long
vertical array of 50 hydrophones 1000 km distant. Like the
ATOC data, the observed time fronts for SLICE89 showed
two distinct regions in the arrival pattern: a highly distorted
final arrival, and stable early arriving wavefronts. Due to the
sparse vertical array used in SLICE89, individual acoustic
modes could not be resolved, so the wavefront envelope is
considered here. In the ray-like region, two different measures
of wavefront timing fluctuations are used as data for our
estimate of internal wave displacements.

The effects of mesoscale sound-speed perturbations on
the wavefront envelope are treated first. Fig. 14 shows the
wavefront envelope for the SLICE89 data, a simulation using
a range-independent sound-speed profile, and a simulation
with the range-independent profile plus mesoscale perturba-
tions. The mesoscale perturbation field was determined by
objectively mapping environmental data from CTD’s, XBT’s,
and AXBT’s [35], [36]. The range-independent sound-speed
profile was calculated from the average of 11 CTD casts
taken during the experiment (10 CTD’s went to 2000-m depth
and one went to 4000-m depth). For the SLICE89 data and
the numerical simulations with internal waves, the wavefront
envelope is defined to be the location in time/depth coordinates
of the intensity level which is 2% of the maximum intensity
of the incoherent average of all of the data (110 pulses are
averaged for the SLICE89 data and 33 pulses are averaged
for the simulation). The calculation of the wavefront envelope
for the simulation using the range-independent profile and the
mesoscale perturbations used the same reference intensity level
as the case with internal waves.

Fig. 14 shows that the observed mesoscale sound-speed
field for the SLICE89 experiment has very little effect on the
wavefront envelope, and, therefore, the mismatch between the
data and the simulations without internal waves is a purely
internal wave effect. This result is different from that of
Tappert and Spiesberger who showed a significant mesoscale
effect for a longer transmission path between Hawaii and
northern California [38]. Since the eastern north Pacific is
known to be a very quiet region for mesoscale activity, this
result may not hold in other parts of the ocean.

(a)

(b)

Fig. 14. Pulse envelope observed from the SLICE89 experiment (solid line)
and numerical simulation calculations. (a) Monte Carlo simulation result for
2.0 GM (long-dash line) and 0.5 GM (short-dash line). (b) Numerical simula-
tion with mesoscale perturbations (long-dash line) and numerical simulation
without any perturbations (short-dash line).

Fig. 14 also shows the wavefront envelopes for the
SLICE89 data and the numerical simulations at 0.5 and 2.0
GM. It is clear that the 0.5 GM prediction matches the data
very well, indicating a 0.5 GM level near the axis.

For the ray-like arrivals, travel-time variances have been
calculated for individual fronts [15]. The broad-band variance

is a measure of travel-time variations which take place
on a time scale of less than 10 min, while the wander variance

is a measure of the travel-time variations which take
place on longer timescales (1 h). Since ray travel times
are very sensitive to internal wave sound-speed changes at
the upper apex of the ray, [32] each wavefront segment is
identified with the average upper turning depth of the
rays that make up that front.

The internal wave displacement variance is estimated using
the travel-time variances calculated from the numerical sim-
ulation at 0.5 and 2.0 GM by assuming a linear relationship
between internal wave displacement variance and travel-time
variance. For the two travel-time variances, the internal wave
displacement variance is calculated using

(32)

(33)

(34)

where and are the broad-band
and wander variances calculated from the numerical
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Fig. 15. SLICE89 internal wave displacement variance inferred from Monte
Carlo numerical simulations. Open circles are displacements inferred from the
wander variance and diamonds are displacements inferred from the broad-band
variance.

simulations at 0.5 and 2.0 GM, and are the measured
variances from the experiment. The quantities
and are the variances of internal wave displace-
ment at 2.0 and 0.5 GM, calculated from

(35)

(36)

where is a reference depth at which the buoyancy frequency
is 3 cph, is the GM internal wave displacement
spectrum [7] in terms of vertical mode numberand horizontal
wavenumber m, cpkm,

cpkm, and are solutions to the internal
wave eigenmode equation [9]. Fig. 15 shows the estimates of

, and has been plotted for reference. For
acoustic energy with turning points below 100 m, the variance
estimates indicate internal wave displacements which are from
0.4 to 1.0 times the reference GM level, but for energy that
samples the upper 100 m the two different variance measures
imply very different internal wave displacements. This result
shows that the spectrum of sound-speed variations that existed
in the ocean near the surface was significantly different from
the GM spectrum modeled in the numerical simulations.

Comparing to other studies, Stoughtonet al. [39] measured
internal wave displacements near Bermuda. They found the
standard GM level for rays which sample the upper 200 m
of the ocean and 0.5 GM for rays whose upper turning points
sample the depth from 600 to 900 m. The Bermuda experiment
did not have a vertical array nor were the transmissions rapid
enough to separate the broad-band and wander variances.
Therefore, to compare our result with the Bermuda experiment,
one must use the average of the wander and the broad-band
variance. The average of the curves in Fig. 15 gives a similar
result to the Bermuda experiment; that is, near 0.5 GM for

the main thermocline and near 1.0 GM in the upper ocean.
However, examining the broad-band and wander variances
separately reveals the inconsistency of applying the GM model
to the upper 100 m of the ocean. Furthermore, the use of
the wavefront envelope extends the measurement of internal
waves into the deep ocean, giving more vertical resolution than
was achieved by Stoughton. Use of the wavefront envelope is
clearly suboptimal, however, because the results depend on
the precise intensity cut-off level used. Therefore, in future
experiments, like the ATOC measurements, use of mode-
resolving arrays is essential so that modal travel times can
be used as acoustic observables.

2) ATOC and AET:For internal wave tomography using
the ATOC and AET data sets, the approach will be to use
non-Monte Carlo methods to avoid the computational intensity
associated with an extensive survey of parameter space. In
contrast to the SLICE89 experiment, for the ATOC and AET
experiments, it is desired to infer all of the parameters of
the GM internal wave model, not just the energy, since
it is known that the acoustic observables can be functions of
the other GM parameters. For example, an increase in the
internal wave energy reduces the vertical coherence, but an
increase in the GM vertical modenumber bandwidth,, has
the same effect. Also, because of the observed weak scattering
for the early ray-like arrivals of the AET (see Section II),
a geometrical optics approach is adopted for the forward
acoustic propagation problem.

Our focus here will be on the acoustic observables of travel-
time variance, vertical coherence, and temporal coherence. The
vertical and temporal coherences are key observables since
they are directly related to the internal wave field vertical
and temporal coherences [31]. Vertical coherence observations
strongly constrain the GM parametersand , and temporal
coherences strongly constrain the GM parameter[see (49)].
For the parameter , for example, it can be shown analytically
that the approximate scaling relations follow, i.e.,

(37)

(38)

and

not a function of (39)

where is the spectrum averaged value of the square
of the internal wave frequency as in the work of Flatté and
Esswein [31]. The last condition simply follows from the fact
that the GM spectrum is factorized in terms of mode number
and frequency [8], therefore, is only a function of .
Using the expressions for temporal and depth coherence (
and ) from Flatté and Stoughton [16], it is found that

(40)

(41)

and

(42)

For the calculations of the acoustic coherence function (the
forward problem), the approach of Flatté and Stoughton [16]
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(and several others) is taken and the coherence between two
points and is written using the expression

(43)

where , the phase-structure function, is defined as

(44)

Equation (43) has been obtained in many ways [1], [40]–[42],
and the traditional derivations rely on the assumption that,
the log-amplitude, and , the phase fluctuation, are zero-mean
Gaussian random variables with .
However, the most general derivation is due to Dashenet
al. [12] using the path-integral technique. The path-integral
derivation shows that (43) is very general and applies regard-
less of whether or not the wave fluctuations are unsaturated
[12]. The limitations on this result come from: 1) the parabolic
approximation to the Helmholtz equation; 2) depth and/or
geographic inhomogeneity of the ocean sound-speed fluctu-
ation field; and 3) azimuthal anisotropy of the ocean sound-
speed fluctuation field. Perhaps the most restrictive of these
limitations comes from violations of depth inhomogeneity.

The phase structure function becomes

(45)

where and are ray paths terminating at points 1 and
2. The quantity is the mean square travel time fluctuation
given by

(46)

and is the travel-time fluctuation covariance given by

(47)

where is the displacement correlation function. At this point,
it has not been established that the aforementioned approach
is the correct treatment of the forward problem; this is a start.

The internal wave displacement correlation function is mod-
eled as

(48)

where is the GM internal wave spectrum, in terms
of vertical mode number and horizontal wavenumbers
and , which is given by [25]

(49)

Here ,
(latitude) is the local vertical component of the earths rotation
vector, and is the buoyancy frequency profile. The
WKB internal wave dispersion relation (

) and the WKB vertical wavenumber (
) are used since they are an integral part of the

GM model [1], [26]. The constants and are normaliza-
tions so that the spectrum integrates to unity. Nominal values
for the GM parameters are: cph,
and m, and is generally taken to be between
50 and 100 [9], [13].

The parameters to be determined from the inverse are the
internal wave energy , the coefficients which give the
corrections to WKB depth scaling for internal wave energy,
the modal bandwidth , and the power law exponentsand .

It can be readily seen thatdepends linearly on and
and nonlinearly on , and . Estimation of these parame-
ters will therefore require a mixed linear/nonlinear inversion
scheme. An iterative linear scheme based on Newton’s method
may prove effective if the nominal GM model parameters are
a good first guess.

At this point, there is no analytic theory for mode travel-time
spread, so there is no known analytic weighting function. Nu-
merical simulations must be done to estimate the sensitivity of
mode spread to variations in internal wave spectral parameters.
In addition, there is the issue of mesoscale effects on modal
spread. For SLICE89, the mesoscale field was very weak, and
the pulse finale was unaffected by these perturbations. This
situation may be different for the ATOC data [38].

3) Other Observables—Intensity Variability:So far, our
discussion of internal wave tomography has only touched
on the information in the acoustic phase, which is primarily
affected by large-scale internal waves. Ewartet al. [35] has
suggested doing internal wave tomography with intensity
information alone since this arrangement would lead to
significant experimental simplification.

In the parabolic approximation, it is convenient to use the
inverse of intensity . Along a geometrical optics ray
path, the following expression for has been derived [10]:

(50)

Letting the sound speed be a meanplus a fluctuation and
expanding in orders of , the results are

(51)

and

(52)
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where, in (52), small terms proportional to
, and have been ignored.

Putting (52) in integral form, squaring, and taking the expec-
tation value yields

(53)

Equation (53) shows that fluctuations in are related to
the correlation function of sound-speed fluctuation vertical
curvature, that is, observations ofcan give us very detailed
information about the smallest scales of the internal wave field.
Recall that the phase structure function, which was central
to the calculation of coherence, was related to the correlation
function of sound-speed fluctuations rather than their gradients.

IV. SUMMARY

Observations of basin-scale broad-band acoustic transmis-
sions in the north Pacific with a center frequency of 75 Hz
have surprisingly revealed that the acoustic wave fields of the
early arriving wavefronts are in the unsaturated or partially
saturated regime. Pulse wander is significantly larger than
pulse spread, and the PDF of wave front intensity is close to the
log-normal distribution. Predictions of the wave propagation
regime based on and , where is calculated using CW
assumptions, indicate saturated wave fields, in contradiction to
the observations. A reasonable but simplistic modification to
the calculation, which models the ray tube width for a finite
bandwidth, gives values which are 1000 times smaller than
the CW calculation and predicts the wave propagation regime
to be unsaturated. A proper treatment of the ray tube width,
which includes Bowlin’s [14] treatment of the sound channel,
but also accounts for the ray tube extension by internal waves
as described by Simmenet al. [10], is a first-order WPRM
issue which remains unresolved.

In general, a theory for pulse propagation is needed to
understand the basin-scale observations presented here and
elsewhere. The Born approximation results presented here,
which do not include a treatment of the ocean waveguide,
are a good starting place for this development. The Born
results, however, do not describe a 10or 10 magnitude effect
between CW and broad-band cases; therefore, much remains to
be discovered in explaining the AET unsaturated wavefields.
Also, it must be reiterated that there are range limitations to
the validity of the Born approximation, and, therefore, the
arrival of a fully broad-band theory for long-range basin-scale
transmissions might be very far away.

The acoustic inverse for internal wave parameters utilizing
a geometrical optics approach constitutes a challenging mixed
linear/nonlinear inverse. Coherence observations, along with
travel time variance, constrain the inverse since vertical coher-
ences are strongly affected by the parametersand , whereas
temporal coherence is strongly affected by the parameter
. Utilizing the information in acoustic intensity variability

can provide a useful probe of small-scale internal waves,
but there is very little known about the forward model for

these observables for long-range ocean acoustic propagation.
A Monte Carlo approach for acoustic fluctuations observed in
the SLICE89 experiment showed the range-average internal
wave energy to be 1.0 to 0.4 times the GM reference level for
the depth range 300 to 100 m and about 0.5 GM for the depth
range 300 to 1000 m. The sensitivity of this result to changes
in other parameters of the GM model was not explored. For
acoustic energy which sampled the upper 100 m of the ocean,
the GM Monte Carlo runs could not be rendered consistent
with the observations by simply adjusting the internal wave
energy; this is a result of the well-known inadequacy of the
GM model in the upper ocean. For basin-scale transmissions,
it is imperative that we be able to formulate a model of upper
ocean internal waves.

Observed acoustic normal mode arrivals for a center fre-
quency of 75 Hz show strong mode coupling, and the coupling
magnitude is consistent with numerical simulations using GM
sound-speed fluctuations. The strong mode coupling signal
from internal waves could, in principle, be used in an internal
wave inverse, but the only way to solve the forward problem is
through computationally intensive Monte Carlo runs [25], [43].
The large mode coupling at 75 Hz hinders efforts to increase
the vertical resolution of acoustic thermometry. Computer
simulations at 28 Hz suggest the first few modes could be
treated adiabatically and, therefore, could be used in acoustic
thermometry.
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